skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lamberth, John"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The purpose of this study was to evaluate the use of compressible soft robotic sensors (C-SRS) in determining plantar pressure to infer vertical and shear forces in wearable technology: A ground reaction pressure sock (GRPS). To assess pressure relationships between C-SRS, pressure cells on a BodiTrakTM Vector Plate, and KistlerTM Force Plates, thirteen volunteers performed three repetitions of three different movements: squats, shifting center-of-pressure right to left foot, and shifting toes to heels with C-SRS in both anterior–posterior (A/P) and medial–lateral (M/L) sensor orientations. Pearson correlation coefficient of C-SRS to BodiTrakTM Vector Plate resulted in an average R-value greater than 0.70 in 618/780 (79%) of sensor to cell comparisons. An average R-value greater than 0.90 was seen in C-SRS comparison to KistlerTM Force Plates during shifting right to left. An autoregressive integrated moving average (ARIMA) was conducted to identify and estimate future C-SRS data. No significant differences were seen in sensor orientation. Sensors in the A/P orientation reported a mean R2 value of 0.952 and 0.945 in the M/L sensor orientation, reducing the effectiveness to infer shear forces. Given the high R values, the use of C-SRSs to infer normal pressures appears to make the development of the GRPS feasible. 
    more » « less